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Abstract—To facilitate the retrieval of volume images from a 
biomedical database (e.g., images of proteins from a 
macromolecular database), it is necessary to obtain concise 
descriptors of the images.  Relatively recently developed 
successful algorithms for high-resolution three-dimensional 
reconstruction of biomedical structures from projections produce 
volume images represented as linear combinations of spherically 
symmetric basis functions (called blobs).  In this paper, we 
discuss our work toward obtaining topological and geometric 
descriptors in the form of Betti triple sequences from such a 
linear combination of blobs, and give some preliminary 
experimental results. 

I.  INTRODUCTION 
The goal of this work is to ease the retrieval, from a 

database, of information relevant to a given biomedical 
structure. 

We assume that we have access to a large database 
containing volume images.  Suppose now that—for example, 
as a result of reconstruction from projections—we have a new 
volume image and we wish to see if anything similar is in the 
database.  This is difficult to achieve if the structures in the 
database are described either as a collection of atoms at 
specific locations or as gray-level volumes, not only because 
of the enormous size of such descriptions but also because, 
due to the variety of ways an object can be prepared and 
imaged, there may be differences (both in shape and in the 
values) between gray-level volumes associated with the same 
type of biomedical object imaged at different times.  We need 
structural descriptors (both of the things in the database and 
the new thing that we have) that are easier to match than the 
atom collection or volume information. 

In addition to being “signatures” of volume images for 
searches in databases, accurate topological and geometrical 
descriptors are likely to lead to better understanding of the 
structural properties of the biomedical specimens under 
investigation.  We report on our preliminary work toward 
obtaining topological and geometrical structural descriptors. 

II.  ART WITH BLOBS 
Algebraic Reconstruction Techniques (ART) assume that a 

specimen can be approximated by a linear combination of a 
finite set of known basis functions, and their task is to estimate 

the weights of these basis functions based on projection data.  
The conventional choice is to use basis functions that have 
value 1 inside a voxel and 0 outside it; typical voxels are cube-
shaped volume elements arranged on a simple cubic grid (so 
that the union of all voxels covers the volume of interest).  
Some very successful algorithms that have been developed for 
the three-dimensional reconstruction of biomedical structures 
from projections produce descriptions of volumes as linear 
combinations of spherically symmetric basis functions; they 
use a certain family of Kaiser-Bessel window functions 
(“blobs”) that can be arranged on various grids [1].  Blobs 
have bell-shaped radial profiles, and they go to zero at their 
boundaries.  Each blob overlaps with its neighbors on the grid.  
The blobs we use are twice differentiable—an important 
property that also holds for their finite linear combinations.  
Their invariance under rotation and their smoothness make 
them well suited for representing natural structures of all 
physical sizes.  It has been found that ART with blobs 
produces high-quality reconstructions and is superior (for 
many tasks) to other well-established algorithms [2]. 

In view of this, we have aimed our initial investigation at 
obtaining topological and geometrical descriptors of volumes 
from their blob representations (which are provided by our 
reconstruction algorithms). 

III.  METHODS 
The three Betti numbers of spatial objects are the number b0 

of components, the number b1 of “holes or tunnels,” and the 
number b2 of cavities.  Edelsbrunner et al. [3] advocate the use 
of sequences related to Betti numbers to represent a volume 
that is originally described as a collection of atoms.  Inspired 
by this work, we aim to produce something similar to 
represent a real-valued function given by a linear combination 
of blobs.  A topological descriptor of such a function is the 
sequence of Betti number triples of the spatial objects 
obtained by thresholding it, as we lower the threshold from the 
maximum value of the function to the minimum value.  
Combined with the threshold values at which the triples of 
Betti numbers change, the sequence also contains non-
topological geometric information. 

To compute these sequences, we first convert the linear 
combination of blobs into a voxel-based gray-valued image 



 

(of suitably high resolution) on a Cartesian grid, by sampling.  
We then consider the sequence of binary images that would be 
obtained if we thresholded the gray-valued image repeatedly, 
as we lowered the threshold from the highest gray value in the 
image to the lowest.  We compute the Betti number triples of 
these binary images and the thresholds at which the triple 
changes.  Usually, there are very many such binary images––
just as many as there are distinct gray-values in the gray-
valued image—and so it would be very expensive to calculate 
the Betti triple of each binary image independently.  Instead, 
we use the method described in the following paragraphs to 
more efficiently compute the Betti triples of all the binary 
images.  (We actually compute the Betti numbers b0 and b2, 
and the so-called Euler number E; the Betti number b1 is 
calculated from the relationship E = b0 – b1 + b2..  We define 
Euler and Betti numbers of binary images using 6-connectivity 
for foreground voxels and 26-connectivity for background 
voxels [4].) 

To compute E and the number b0 of connected components 
of foreground voxels at each threshold, we grow a set of 
voxels: we start with the empty set and add all voxels (one at a 
time) in non-increasing order of their gray values. 

The Euler number E is initialized to 0, and is recalculated 
each time we add a new voxel to the set.  In computing the 
change in E when we add a voxel, we need only consider the 
eight 2×2×2-voxel subunits that contain the new voxel.  The 
contribution of each 2×2×2-voxel subunit to the Euler number 
of a voxel set is given by a 256-element lookup array [5]. 

To track the number b0 of connected components as we 
grow the set of voxels, we give each new voxel a label when 
we add it to our set, and we maintain equivalence classes of 
labels, where each class represents a component.  If the new 
voxel has no 6-neighbor in our voxel set, we give it a new 
label and create a singleton equivalence class consisting of 
just that label.  Otherwise, we merge the equivalence classes 
of the labels of the new voxel’s 6-neighbors, and give the 
voxel a label that is representative of the resulting class.  Each 
class is implemented as a tree in a disjoint set forest (DSF) of 
labels, and when merging classes we use union-by-rank with 
path compression [6].  The number b0 is just the number of 
classes. 

For the sequence of cavity counts b2 we grow the set of 
background voxels, adding voxels in non-decreasing order of 
their gray values.  We use a new DSF and proceed as in the 
case of b0, but consider the 26-neighbors of each new voxel 
rather than its 6-neighbors.  Components that extend into the 
image’s bounding box are not cavities and so are not counted. 

Our program calculates Betti triple sequences very 
efficiently.  For example, the production (including disk 
writes) of the Betti triple sequence from a 128×128×128 
voxel-based gray-valued image took 28 seconds (on a 1.7GHz 
Intel® XeonTM with ≈1GB RAM running Linux). 

IV. PRELIMINARY RESULTS 
The approach of the previous section produces from linear 

combinations of voxels or blobs a finite sequence of triples of 

Betti numbers.  It produces the mathematically correct 
sequences for sufficiently fine voxel images derived from 
mathematical descriptions of phantom images that consist of 
the superimposition of homogenous (single intensity 
contribution) simple regions (ellipsoids); see Fig. 1, left (the 
correct Betti sequence for this three dimensional phantom has 
6 triples).  However, for images converted from blob-images 
(obtained from reconstruction procedures based on projections 
of the phantom; see Fig. 1, right), we get sequences that are 
very long (e.g., more than 100,000 triples) and reflect more 
the inaccuracies of reconstruction than the inherent topology 
of the underlying phantom. 

 

   
Fig. 1. A slice from a voxelization of the phantom (left) and the corresponding 

slice obtained from a reconstruction (right).  A very narrow display window 
was chosen to emphasize their difference. 

V. FUTURE CHALLENGES 
We hope to reduce the currently obtained long sequences 

into shorter, more useful sequences.  Preliminary attempts at 
achieving this indicate that we need to consider geometrical 
(as well as topological) information; for example, by 
introducing notions corresponding to that of persistent Betti 
numbers in [3]. 

Our approach so far has involved conversion of blob 
representations into voxel representations before further 
processing.  Some information is lost, and some errors are 
introduced if the output resolution is not high enough.  A 
mathematically challenging task is to develop a method for 
recovering useful sequences of Betti number triples directly 
from blob descriptions of volumes. 
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